- 
gammy.models.numpy.GAM
GAM¶
- 
class GAM(formula, tau, theta=None)[source]¶
- Bases: - object- Generalized additive model with NumPy backend - Parameters
- formulagammy.formulae.Formula
- Formula object containing the terms and prior 
- thetaGaussian
- Model parameters vector 
- tauDelta
- Observation noise precision (inverse variance) 
 
 - 
property covariance_theta¶
- Covariance estimate of model parameters 
 - 
fit(input_data, y) → gammy.models.numpy.GAM[source]¶
- Estimate model parameters - Parameters
- input_datanp.ndarray
- Input data 
- ynp.ndarray
- Observations 
 
 
 - 
formula¶
- Model formula 
 - 
property inv_mean_tau¶
- Additive observation noise variance estimate 
 - 
load(filepath: str) → gammy.models.numpy.GAM[source]¶
- Load model from a file on disk 
 - 
marginal_residual(input_data, y, i: int) → numpy.ndarray[source]¶
- Calculate marginal residual for a given term - Parameters
- input_datanp.ndarray
- Input data 
- ynp.ndarray
- Observations 
 
 
 - 
marginal_residuals(input_data, y) → List[numpy.ndarray][source]¶
- Marginal (partial) residuals - Parameters
- input_datanp.ndarray
- Input data 
- ynp.ndarray
- Observations 
 
 
 - 
property mean_theta¶
- Mean estimate of model parameters - Posterior if model is fitted, otherwise prior. 
 - 
predict(input_data) → numpy.ndarray[source]¶
- Calculate mean of posterior predictive at inputs - Parameters
- input_datanp.ndarray
 
 
 - 
predict_marginal(input_data, i: int) → numpy.ndarray[source]¶
- Predict a term separately - Parameters
- input_datanp.ndarray
 
 
 - 
predict_marginals(input_data) → List[numpy.ndarray][source]¶
- Predict all terms separately - Parameters
- input_datanp.ndarray
 
 
 - 
predict_variance(input_data) → Tuple[numpy.ndarray][source]¶
- Predict mean and variance - Parameters
- input_datanp.ndarray
 
 
 - 
predict_variance_marginal(input_data, i: int) → Tuple[numpy.ndarray][source]¶
- Evaluate mean and variance for a given term - Parameters
- input_datanp.ndarray
 
 
 - 
predict_variance_marginals(input_data) → List[Tuple[numpy.ndarray]][source]¶
- Predict variance (theta) for marginal parameter distributions - Parameters
- input_datanp.ndarray
 
 
 - 
predict_variance_theta(input_data) → Tuple[numpy.ndarray][source]¶
- Predict observations with variance from model parameters - Parameters
- input_datanp.ndarray
 
 
 - 
tau¶
- Additive noise precision parameter 
 - 
theta¶
- Model parameters 
 - 
theta_marginal(i: int) → gammy.models.numpy.Gaussian[source]¶
- Extract marginal distribution for a specific term 
 - 
property theta_marginals¶
- Marginal distributions of model parameters