-
gammy.models.numpy.
GAM
GAM¶
-
class
GAM
(formula, tau, theta=None)[source]¶ Bases:
object
Generalized additive model with NumPy backend
- Parameters
- formulagammy.formulae.Formula
Formula object containing the terms and prior
- thetaGaussian
Model parameters vector
- tauDelta
Observation noise precision (inverse variance)
-
property
covariance_theta
¶ Covariance estimate of model parameters
-
fit
(input_data, y) → gammy.models.numpy.GAM[source]¶ Estimate model parameters
- Parameters
- input_datanp.ndarray
Input data
- ynp.ndarray
Observations
-
formula
¶ Model formula
-
property
inv_mean_tau
¶ Additive observation noise variance estimate
-
load
(filepath: str) → gammy.models.numpy.GAM[source]¶ Load model from a file on disk
-
marginal_residual
(input_data, y, i: int) → numpy.ndarray[source]¶ Calculate marginal residual for a given term
- Parameters
- input_datanp.ndarray
Input data
- ynp.ndarray
Observations
-
marginal_residuals
(input_data, y) → List[numpy.ndarray][source]¶ Marginal (partial) residuals
- Parameters
- input_datanp.ndarray
Input data
- ynp.ndarray
Observations
-
property
mean_theta
¶ Mean estimate of model parameters
Posterior if model is fitted, otherwise prior.
-
predict
(input_data) → numpy.ndarray[source]¶ Calculate mean of posterior predictive at inputs
- Parameters
- input_datanp.ndarray
-
predict_marginal
(input_data, i: int) → numpy.ndarray[source]¶ Predict a term separately
- Parameters
- input_datanp.ndarray
-
predict_marginals
(input_data) → List[numpy.ndarray][source]¶ Predict all terms separately
- Parameters
- input_datanp.ndarray
-
predict_variance
(input_data) → Tuple[numpy.ndarray][source]¶ Predict mean and variance
- Parameters
- input_datanp.ndarray
-
predict_variance_marginal
(input_data, i: int) → Tuple[numpy.ndarray][source]¶ Evaluate mean and variance for a given term
- Parameters
- input_datanp.ndarray
-
predict_variance_marginals
(input_data) → List[Tuple[numpy.ndarray]][source]¶ Predict variance (theta) for marginal parameter distributions
- Parameters
- input_datanp.ndarray
-
predict_variance_theta
(input_data) → Tuple[numpy.ndarray][source]¶ Predict observations with variance from model parameters
- Parameters
- input_datanp.ndarray
-
tau
¶ Additive noise precision parameter
-
theta
¶ Model parameters
-
theta_marginal
(i: int) → gammy.models.numpy.Gaussian[source]¶ Extract marginal distribution for a specific term
-
property
theta_marginals
¶ Marginal distributions of model parameters